
PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

The ADE Environment
A Macroscopic Object Architecture for Software
Componentization and Distributed Computing

David Slik <dslik@uvic.ca>

This paper describes a software runtime environment for the development of distributed compo-
nent-based software. Called the Asynchronous Distributed Environment, or ADE, it permits rapid
software development of distributed applications spanning multiple computers.

The ADE environment is based on software components called "Modules". A Module can be
thought of as macroscopic objects that act and run as separate entities. Modules can range in size
from a small data structure manager to a user interface handler to a complete server. Except for the
ability to send messages to other Modules, each Module is completely isolated of the rest of the
software running on the computer. Modules communicate by sending these messages between each
other. With this basic communication mechanism, relationships can be defined and full software
systems can be built up. The resulting systems are fully asynchronous, utilize preemptive
multitasking and support distributed computing across a network.

Modules:
Easily implement state machine servers, or even complete subsystems.

Easily integrate with each other and existing systems.

Can be programmed in any language, both object oriented and non-object oriented.

Inter-operate, regardless of their native language.

Can be built from existing code.

Support scripting and have hooks for visual languages.

Scale from a single system to a multiprocessor to a multicomputer.

Through this environment, this paper addresses portions of the scalability problem in software
development. These include scalability of the software and of the development effort required.

1. The Componentization
Problem
One of the core problems in software

development is how to manage complexity.
At the surface, it appears that software
development time is the sum of the time
required to solve the problems that make
up the system. After all, software is built by
combining solutions to smaller problems.
Unfortunately, this is not the case. Large
system development efforts require much

more time then that would be required to
solve the component problems separately.
This disparity has become known as the
integration problem. Thus, how software is
broken into components and how these
components interact is fundamental to the
integration problem and consequently has a
direct impact on complexity.

Componentization of programs has
been with computing for a long time. Pro-
gram fragments were written separately
and reused back when programs were

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

written on punch cards. While this worked
for smaller programs, ad hoc segmentation
did not last long as the concept of the sub-
routine rapidly emerged in programming
languages. The concept of the subroutine
has been such a powerful concept that it
still dominates programming languages
today. While some programmers used
subroutines just to segment code, others
used it to reduce the complexity of the
development process. They did this by
setting up enforced guidelines and adding
the ability to restrict access to local vari-
ables within a subroutine. As a result of
their success, the subroutine has become a
core part of the programming mindset.

Over time, these concepts of isolation
became part of the central tenants of struc-
tured programming. Combined with
guidelines on branching and restrictions on
random jumps in execution, structured
programming had far reaching effects. But
while it had reduced complexity, the devel-
opment it enabled rapidly nullified any
gains. With program sizes and problem
domains growing at an ever-increasing rate,
software grew in complexity faster then
mechanisms could be put in place to man-
age it.

A few people in the industry and re-
search community saw that subroutines
were just a first step. After investigating
how people tended to think and program,
they proposed that data and associated
routines should be treated as objects. These
objects would be made the focus of the
development process. By structuring these
software objects like objects in real life, the
concepts of properties and actions would
make sense at an intuitive level. When
object oriented languages are used, the way
that programmers make their software
interact are very different then when using
subroutines. Subroutines are usually tightly
integrated, with the implementation having
a direct impact on how the routines are
used. With objects, the implementation and

interface could be truly separated and less
tightly coupled.

In a way, Object Orientation can be
thought as a stricter form of structured
procedural programming. On a technical
side, it is simply a more rigid set of guide-
lines that data and procedures adhere to.
And like structured programming, it has
reduced complexity by a limited amount.
Software has continued to grow in size and
complexity at an exponential rate. With the
advent of faster computers, the beginning
of universal network connectivity, software
has once again reached the point where a
new mechanism to reduce complexity is
needed.

Software could have continued to be
developed using existing techniques if no
new stresses were placed on the develop-
ment community. But like most areas in
computing, change is the only constant. The
evolution of the Internet into a universal
network service was this next large stress.
The changes in software development
requirements as a result of worldwide
networking are similar to those that oc-
curred during the advent of the graphical
user interface. As most software was de-
signed for single computer systems,
network connectivity rarely meant more
then file and print services provided by the
operating system. Now it seems that almost
every application is including mechanisms
for Internet access, serving, collaborative
document creation and networking.

This need for an effective mechanisms
to build network enabled distributed appli-
cations is what has motivated this paper
and the associated proof of concept soft-
ware package.

If structured programming are objects
at the instruction level
If Object Orientation is objects at the data
level
Then the next step is objects at the problem
level

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

If instruction programming is structure
at the CPU level
If advanced programming interfaces (APIs)
is structure at the system level
Then the next step is structure at the net-
work level

This trend is already becoming appar-
ent in most development environments.
Software architectures are migrating to-
wards problem domain objects (eg,
ActiveX, OpenDoc) and network
architectures (eg, DCE, DCOM, and
CORBA). The growth of the World Wide
Web can be taken as an example of the
readiness of the industry for these tech-
niques. The Web can be viewed as a
problem level programming language
based around objects at a network level
(Links and files and images). The popular-
ity of Visual Basic, one of the most used
programming languages in the world, is
also an indication of this need.

software, the barriers to entry in the soft-
ware marketplace once again be reduced.

1.2 Examples of componentization
in the Industry

1.2.1 LabView
LabView is a visual programming

language designed for instrumentation,
data acquisition and processing. It has
innovative and unique mechanisms for
creating software components. It represents
each action as a separate object and allows
collections of objects to become a reusable
object. Thus, large applications are easily
built up from simple components. As a
result of the visual nature and the implicit
data flow architecture of the language, it
supports automatic compilation into paral-
lel threads and is thus executed efficiently
on single and multi-processor systems.

Figure 1.1: Example LabView interface and diagram

In the above diagram of a LabView
program, note the use of coloration to indi-
cate different data types and standard logic
and mathematical symbols to represent
corresponding operations on data streams.

This approach to software
componentization addresses many of the
issues raised. As LabView has a consistent
runtime and object framework, all objects

With the beginning of the acceptance of
visual languages and component-based
software, this is an exciting time for the
industry. As standards merge towards an
open and interoperable architecture, soft-
ware components will be able to work
together resulting in software complexity
being reduced once again. With the exist-
ence of standard components to build

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

work together. Its approach to visual pro-
gramming allows visual construction of
both the logic and the interface. Basic
mechanisms for distributed computing are
included and allow two or more LabView
programs to exchange data over a network.

LabView has been targeted towards a
very specific vertical market: data acquisi-
tion, processing and display. As it has been
focused on this problem space from initial
development onward, some of the design
decisions make it not suitable for general
application development. Despite this,
LabView is a development environment
that everyone should take a look at to see
what is coming.

1.2.2 JavaBeans
Java takes several interesting ap-

proaches to software componentization.
While Java relies on the principles of object
orientation for objects at the language level,
JavaBeans provides high level support for
reusable user interface components. Given
the integrated support for networking and
distributed computing, development of
object based software for network applica-
tions in Java has flourished.

The Java language is based on syntax
similar to that of languages such as Ada, C
and C++, which came before it. It is text
based and built on the principles of object
orientation. Distributed computing capa-
bilities currently are focused around remote
method invocation. This is a variant of the
Remote Procedure Call updated for the
newer object oriented architecture.

JavaBeans provide a standard template
used to create medium weight reusable
components. These components can be
integrated directly into Java programs
through written code or assembled together
using a visual development tool. Almost all
JavaBeans are developed with a user inter-
face. Support for Beans without an interface
has just been introduced as Enterprise Java
Beans. An example of a JavaBean is an

editable text box that displays bullets when
a user enters a password.

 Java has been exciting for the develop-
ment community. It solves and addresses
many concerns developers had with older
languages. It is safe and easier to develop
in, network aware, platform independent
and has a wide range of libraries available.
Java is poised to become the next general-
purpose text based programming language,
if not a complete environment.

1.2.3 OCX and ActiveX controls
ActiveX controls (Formerly OCX and

VBX controls) are high level user interface
objects, similar in nature to JavaBeans.
While ActiveX controls are not platform
independent like JavaBeans, they are com-
piled natively and thus run efficiently.
ActiveX controls are based on Microsoft’s
COM (Common Object Model) object
model and the OLE (Object Linking and
Embedding) framework. While ActiveX
lacks the elegance of design found with
JavaBeans, they are widely accepted in the
Windows world. They form the enabling
component architecture for Visual Basic,
Delphi and most other component based
programming environments. It is worth
noting that these environments have been
very successful, and many large libraries of
components are available.

 From a Macintosh standpoint, ActiveX
has not been adopted as a result of several
reasons. These include late introduction
date, lack of development tools and con-
flicts with the Macintosh way of
programming. Implementation has been
limited to Microsoft software and a few
third party products.

2. Distributed Computing
The era of single processor computer is

almost over. For the last several years most
computers have already had additional
processors within them. These processors
have provided I/O services and specialized

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

co-processing. Five years from now, all but
the simplest computers sold will have
multiple central processing units, either
within a single chip or as multiple chips.
Almost all of the modern microprocessors
like the PowerPC and Intel Pentium already
have multiple processing elements within
them that allow several instructions to be
pipelined, or executed simultaneously. An
example of this architecture is AltiVec,
Motorola’s addition of a new vector arith-
metic unit to enhance the PowerPC in
performing DSP operations.

The difference between these existing
mechanisms and multiprocessing in the
future is in how the systems are pro-
grammed. Currently, pipelining is
transparent to the programmer. In systems
with multiple processors and shared
memory, properly programmed threads are
automatically shared across processors.
While this trend of independence of the
programming methodology and the hard-
ware will continue, the level at which it has
to be taken into account by the programmer
will rise towards the problem domain. This
can already be seen happening, with the
advent of the Internet and the resulting
client/server software developments.

In the age where connectivity is taken
for granted, the physical barriers used to
define the limits of a computer system will
blur. Multiple processors will become com-
mon in computer systems and these
systems will be increasingly tied together.
As the software and programming mindset
changes, Sun Microsystems’ slogan, “The
Network is the Computer” will become a
reality. The power of distributed computing
is not speed increases. It is a promise of cost
reduction, effective utilization of resources,
and resiliency. This efficiency is already
being taken advantage around the world
where large UNIX systems support hun-
dreds to thousands of users simultaneously.
Such a system is much less expensive then
dedicated computers for each user. When

resources can be effectively utilized, less
computing power is wasted, and thus less
is required.

To take advantage of this emerging
connectivity and resulting computing
power, new mechanisms and methods to
develop software are needed.

2.2 Examples in the Industry

2.2.1 OSF/DCE
The Open System Foundation’s Dis-

tributed Computing Environment (DCE) is
one of the most mature distributed software
frameworks available. Based around con-
ventional procedural languages and
Remote Procedure Calls (RPC), DCE pro-
vides a variety of layered services that
include security, object stores, directories,
time services and a complete distributed
file system.

DCE implementations run as exten-
sions to existing operating systems and
coexist with existing software. Vendors
have implemented DCE on most major
operating systems, including the Mac OS.
As a result of the wide range of services
and platforms supported, many distributed
applications have been written using DCE.

2.2.2 CORBA
CORBA, or the Common Object Re-

quest Broker Architecture, is an industry
wide object model designed for distributed
computing. Supported by most major soft-
ware vendors except Microsoft, CORBA is
currently the leading architecture for large
scale distributed systems. It is maintained
as a standard by the Object Management
Group (OMG).

CORBA is not based around the con-
cept of the RPC. The OMG has refined and
evolved its network communication con-
cepts to move away from process blocking
and to permit the extension of the princi-
ples of object oriented software to the
distributed sphere. By using an Interface
Definition Language (IDL), software writ-

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Message Interface

I/O Device

Message Interface

I/O Device

Message Interface

I/O Device

Communication Layer

Host System

Message Interface

Figure 2.1: I
2
O Architecture Diagram

ten in different languages and on different
systems can understand and thus exchange
different types of data and associated struc-
tures.

Like DCE, CORBA is implemented as
an environment that runs on top of an
existing operating system. CORBA also is
useable with programs based on
Microsoft’s Common Object Model and
programs written in Java. CORBA has a
wide range of services and is beginning to
displace DCE in terms of systems devel-
oped.

2.2.3 I2O
I

2
O, while not a complete distributed

architecture like the previous examples,
shows how the concepts of distributed
computing are becoming widespread and
prevalent in hardware and software design.
I

2
O is a distributed message based I/O

architecture that is designed for high per-
formance computing systems. Although it
is intended for use within a computer sys-
tem, its architecture is similar to many
message based communication systems
used in distributed architectures.

In I
2
O, I/O devices are connected to the

computer via a bus that is used as a packet
network. Each I/O device has its own
processor, called an IOP. The CPUs and
IOPs communicate over the bus by sending
small messages. In addition to this architec-
ture being designed for allowing CPUs and

I/O devices to communication, it is also
intended to serve as a communication
foundation for clustering and other tightly
coupled non shared memory distributed
computing applications.

I
2
O is a very interesting driver model

as it offers the potential to connect off the
shelf hardware directly into a message
based distributed computing system. As a
result of the abstraction provided, it also
allows support of many different devices by
writing a single class driver.

3. The ADE Environment

3.1 Disclaimer
The problems found in software devel-

opment and distributed computing are very
complex. The system discussed in this
paper, the ADE Environment, is targeted to
investigate solutions to a small but impor-
tant part of the problems discussed above.
It should be noted that none of the material
and approaches discussed in the paper is
new. These ideas, mechanisms and
architectures have been extensively dis-
cussed in the industry for over thirty years.

What the ADE Environment does
provide is an implementation that allows
programmers to explore the issues sur-
rounding componentization and
distributed computing. It is sufficiently
capable to develop commercial grade soft-

ware in, and is
intended to
become a plat-
form for future
development
efforts by the
companies
involved in its
development.

Some of the
design tradeoffs
in the ADE are
disliked. The
mindset of

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

linear procedural programming is still quite
strong, and throwing away serialization,
message order enforcement, guaranteed
delivery and synchronization is seen as
extreme, even when at a high level. While
many of them can be built into the system
by adding modules and libraries, as the
system is intended for experimental pur-
poses at this stage, their inclusion at a
future date can not be guaranteed. In addi-
tion, many of these perceived deficiencies
will be removed from view with the devel-
opment of a planned visual front end.

3.2 Overview
This paper describes an object model

and its supporting run time environment
used to integrate macroscopic software
objects. These macroscopic software objects
can then be used to build programs that run
on stand-alone and distributed computing
systems.

The object model is based around
software components called "Modules". A
Module can be thought of as a collection of
software routines that act and run as sepa-
rate entities, independent of each other.
Modules can range in size from a small data
structure manager to a user interface han-
dler to a complete server. A Module can
coexist with thousands of other modules, or
have its own dedicated computer. These
Modules communicate by sending mes-
sages to each other. These two capabilities
permit complex software systems to be
built.

This system has been named the Asyn-
chronous Distributed Environment, or
ADE. The messaging format and structure
has been named Asynchronous Distributed
Messaging, or ADM.

3.2.1 Design Goals
Simplicity

The system must be simple, both in
implementation and architecture. This
will permit low runtime overhead in

processor cycles and memory. Addi-
tionally, it permits the system to be
easily developed and debugged.

Clean software model
It will ensure that software written for
the system has a consistent yet flexible
architecture and takes advantage of the
specialized capabilities provided for it.

Multiple implementation levels
Allow the system to range from a full
operating system to a layer sitting on
top of a existing operating system to a
gateway permitting access to external
systems.

Language independence
Permit software to be constructed in
any common programming language,
both object oriented and procedural.

Strong typing and interface binding
Inputs, outputs and serialized streams
are to be strongly typed and meta-
information about I/O should permit
graphical programming and scripting.

Adoption of emerging hardware trends
Designed for Hardware I/O using the
I

2
O specification. Supports native ATM

packetization and virtual channel
creation. Designed with distributed
hardware architectures in mind.

Elimination of synchronization and block-
ing
Designed to not require synchroniza-
tion or blocking. Hardware interfaces
do not depend on interrupts.

Loosely coupled architecture using mes-
sage based communication
Modules are designed to be completely
isolated from each other. They can only
communicate to each other via mes-
sages, and these messages can be
ignored.

Processor-Pool distributed computing
Users log into a collection of proces-
sors. There is no "home" system.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

3.2.2 Architecture Advantages
Modules can be easily and quickly

developed
Encourages software to be broken into

separate components
Encourages designs with higher levels

of re-usability
Module size can range from state ma-

chines to servers to complete subsystems
Integrates and inter-operate with exist-

ing software, libraries and operating
systems

Programmable in many object oriented
and non-object oriented languages

Modules communication is independ-
ent of native language, processor type and
node

Existing source code can be used to
build Modules

Supports extensions for scripting and
visual languages

Scales from a single processor compu-
ter to a multiprocessor to a multicomputer

Very low runtime and object overhead

3.2.3 Architecture Disadvantages
Experimental and incomplete imple-

mentation
Lack of services and libraries
Software components must interact in

an asynchronous fashion
Synchronization at a thread level is not

available

3.3 Description
In brief, the ADE system is:
A system comprised of a variable

number of preemptive (and cooperative in
Mac OS) threads running with portions of
the address space mapped into each thread.
Threads are logically structured into groups
called Modules. Each Module contains
process information and has IPC mecha-
nisms that include an input queue and a
varying number of ports, which send mes-
sages to the input queues of other modules.
Module software is structured as an infinite

loop state machine that handles incoming
events. When combined together, the inter-
acting Modules form a complete software
system.

4. Modules and Messages

4.1 Modules
Modules are the processes of the sys-

tem. A Module is a collection of handlers
that interpret messages. Each Handler
performs an action on messages received
from other Modules. The internal structure
and how Modules are implemented is left
to the programmer, but as long as they
conform to the Module guidelines, they will
run and inter-operate.

Example C Module
void main(EventPtr theEvent)
{

unsigned int MessageCount;

// Constructor
MessageCount = 0;

While(!TerminateFlag())
{

PullMessage(&theEvent);

MessageCount = MessageCount + 1;

Switch(theEvent->EventType)
{

case EVENT_ COUNT_QUERY:
{

PostReply(theEvent,
EVENT_COUNT_RESULT,
MessageCount, 0, 0, 0, 0, 0);

break;
}
case EVENT_COUNT_CLEAR:
{

MessageCount = 0;
break;

}
}

}

// Destructor would go here
}

This module has two handlers that
handle two messages. If a message of type
EVENT_COUNT_QUERY is sent to the

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

module, a EVENT_COUNT_RESULT event
is returned. Within the result event is the
number of messages received by the Mod-
ule over its lifespan. The second handler is
invoked if a message of type
EVENT_COUNT_CLEAR is received. This
handler resets the counter to zero.

This structure maps directly into the
object oriented methodology of program-
ming. If a C++ style object was used to
manage the count, the module could be
rewritten as follows.

Example C++ Module
class Count
{

private unsigned int InternalCount;

public Count()
{

this.Reset();
}

public Incriment()
{

InternalCount = InternalCount + 1;
}

public unsigned int Get();
{

return(IntenralCount);
}

public Reset()
{

InternalCount = 0;
}

}

void main(EventPtr theEvent)
}

theCount = new Count();

While(!TerminateFlag())
{

PullMessage(&theEvent);
theCount.Incriment();

Switch(theEvent->EventType)
{

case EVENT_ COUNT_QUERY:
{

PostReply(theEvent,
EVENT_COUNT_RESULT,
theCount.Get(), 0, 0, 0, 0, 0);

break;
}

case EVENT_COUNT_CLEAR:
{

theCount.Reset();
break;

}
}

}
}

While this method of coupling events
into an object is simplistic, more compli-
cated and efficient mechanisms can be
developed. With the addition of introspec-
tion, events could automatically invoke the
corresponding method in the object. For
example, if the objects that the Module was
built contained an object called screen that
had a method called clear, a Event with a
type of EVENT_SCREEN_CLEAR could
automatically invoke that method.

4.1.1 Module Theory of Operation
When the Process Server creates mod-

ules, new threads and memory spaces are
allocated. After the environment is initial-
ized, the main routine of the module is
executed. Within the main routine there are
three important parts of every module.

The constructor is where variables and
storage that is global to the entire module
are allocated and initialized. These vari-
ables are persistent between messages and
are usually used to store global information
throughout the life span of the Module.

The Module State Machine is an end-
less loop that continuously dispatches
messages to the corresponding handler. On
each cycle around the loop, a flag is
checked to see if the module is scheduled to
be terminated. If this flag is true, the
deconstructor is called. Otherwise, the
contents of the loop are executed. First, the
PullMessage routine is called. If no mes-
sages are pending, the Module is put to
sleep. Otherwise, a message is returned.
Depending on the contents of the message
(usually the EventType field), different
handlers are then called.

The deconstructor deallocates memory
allocated during the life of the Module and

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

closes any open ports and streams. It is
called just before the module is terminated.

Modules are structured as a state ma-
chine that interprets asynchronous events.

The Simplest Module
void main(EventPtr theEvent)
}

While(!TerminateFlag())
{

PullMessage(&theEvent);

Switch(theEvent->EventType)
{

case EVENT_BEEP:
{

SysBeep(0);
break;

}
}

}
}

This module will cause a Mac OS
system to beep when it is sent a message
with the EventType field set to the constant
EVENT_BEEP.

Actions performed by the module can
be blocking or asynchronous. Modules can
create their own threads, and process a
message while still receiving and acting on
other messages. If a module is processing a
message, messages received are queued.

4.2 Handlers
A Handler is the programmer-defined

block of code that interprets a received
message. A Module will consist of one or
more handlers. In the earlier section, the
sample code of a Module caused the system
to beep. The code below is the Handler that
was invoked by the EVENT_BEEP message.

EVENT_BEEP Handler
case EVENT_BEEP:
{

SysBeep(0);
break;
}

This simple Handler is written directly
into the Module switch statement. As the
code gets more complex, Handlers are
usually moved into a separate routine or

object that performs the function when the
Handler is invoked. The next example
shows how a Handler would be segmented.

EVENT_BEEP Handler - Preferred Handler
Separation

// From Module.c
case EVENT_BEEP:
{
BeepHandler();
}

// From ModuleHandlers.c
void BeepHandler(void)
{

SysBeep(0);
}

Handlers are usually located in a sepa-
rate file, named ModuleHandlers.c.

4.2 Messages
Modules are completely isolated form

each other. As they are unable to change
anything outside their own memory space,
modules require a mechanism to allow
them to interact. This mechanism is mes-
sages. The environment described is
completely based on messages. Sent asyn-
chronously from module to module, they
form the only recommended method of
communication.

Most traditional computing systems
with distributed capabilities (NT, UNIX,
DCE, etc) focus on the Remote Procedure
Call, or RPC. An RPC is a direct extension
of standard procedural computing, where
the instructions executed are on a different
computer. RPCs advantage is that it is
based on this traditional style of program-
ming. Its disadvantage is the same. Linear,
instruction by instruction style program-
ming is complex and not easily
parallelizable.

The message format chosen for this
system is the ADM (Asynchronous Distrib-
uted Messaging) format that was developed
for low cost messaging over ATM networks.
ATM offers several advantages, and in
many ways is directly suited to the ADE

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

system. As a connection-based networking
architecture, most of the overhead is in
establishing the initial connection. As the
ADE system handles routing, static connec-
tions can be set up between different nodes
at startup. This permits ATM drivers to be
used efficiently. Packets can be directly
passed to these connections without having
to use high-level driver functions. ADM
packets can also be sent over TCP/IP and
ADSP protocols.

4.3.2 ADM Message Format
The ADM message, the mechanism for

all message and event based information
transfer in the system is based on a 53 byte
ATM frame. Of this, five bytes are reserved
for use by the ATM delivery protocol, leav-
ing 48 bytes. These bytes are further
divided up into twelve 32 bit words, the
first half are reserved for system informa-
tion, and the last half open for programmer
use. Data transfer requiring more then 24
bytes worth of data should be accom-
plished using streams.

Figure 4.3.2: Messages in Memory

All fields of messages are accessible to
programs. When messages are sent, some of
the fields are overwritten by system infor-
mation, and thus should not be used.

Message Header
//--
// COPYRIGHT (c) 1997, 1998, David Slik. All Rights Reserved
//--
// Contents : ADE Event Header (Public)
// (EventServicesLibrary.h)
// Date Created : July 11, 1997
// Written By : David Slik
//--

// STRUCTURES ---

typedef struct
{

uint32 EventType;
uint32 DestinationPID;
uint32 DestinationNID;
uint32 SourcePID;
uint32 SourceNID;
uint32 Timestamp;
uint32 Slot1;
uint32 Slot2;
uint32 Slot3;
uint32 Slot4;
uint32 Slot5;
uint32 Slot6;

} EventStructure, *EventStructurePtr;

4.3.3 ADM Message Fields
EventType

The EventType field contains an identi-
fier that corresponds to the type of event
the message is about. The receiving module
uses this field to decide what action should
be performed as a result of the reception of
the message

There are three ranges of identifiers:
Reserved Identifiers (0 - 4096) Internal and reserved
System Identifiers (4096 - 65535) System modules
User Identifiers (65545 - 232) User Modules

EventType Identifiers are registered to
prevent conflicts.

Destination Process ID
The Destination PID is the unique

identifier that refers to the module that the
message is sent to. Each module, when
created is assigned an unique identifier.
This identifier is stored in the process tree
and is used by the dispatcher to route mes-
sages to the module.

Destination Node ID
The destination NID is the unique

identifier that refers to which node (host)
that the message is sent to. Every system
that is connected together in the system is
assigned a address that is used to route to
it. Currently the system topology is a eight
dimensional torus.

Source Process ID
The source PID identifies the module

that sent the message. This field is auto-

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

matically set by the internal IPC routines
and can not be modified by the module.

Source Node ID
The source NID identifies the system

from which the message originated.
Timestamp/TTL

In local messages, the Timestamp/TTL
field holds a local timestamp of the system
clock when the message was sent. On mes-
sage destined to remote systems, the
Timestamp/TTL holds a Time-To-Live
(TTL) value that is used to prevent routing
loops.

Payload
The payload is a contiguous set of

twenty-four bytes that is used for passing
parameters. Each different EventType iden-
tifier will define what type of data is stored
in the payload fields and how it should be
structured.

4.3.4 Message EventType Naming
Conventions
As EventType names are usually #de-

fines to registered EventType identifiers. To
help make these identifiers easier to use,
most programmers add a textual name.
Several guidelines exist to help prevent
naming conflicts and maintain a consistent
naming convention.

All system and server messages begin
with the EVENT_ constant. Then comes the
object specifier, then comes the action or
result. Examples of typical naming include:

EVENT_WINDOW_CLOSE
EVENT_PROCESS_CREATE
EVENT_MEMORY_AMOUNT
To prevent event conflicts, it is recom-

mended that programmers use prefixes for
their messages. An example would be:

STI_STATUS_QUERY
DSTI_STATUS_RESPONSE
IRIS_TREND_RESPONSE
It is recommended that a four-letter

representation of the company or product
name is used.

4.3.5 Message Use Recommendations
As how messages are used are largely

dependent on the architecture of the soft-
ware and the style of the programmer, few
restrictions are placed on message use.

The SourceID, SourceNID,
TimeStamp/TTL are set by the kernel.
Therefore these fields are only useful for
events that have been received.

For more information about posting
and retrieving messages, see section 5.1.3
for API details.

4.3 Streams
Streams are the data flow program-

ming aspect of the system.
They are one way, read only mecha-

nisms to move bulk data from one module
to another. Streams can be connected
through modules called filters. These mod-
ules function much like filters do in the
UNIX operating system. There are two
types of streams, active streams, which are
data stored in a time addressable form and
dormant streams, which are in a space
addressable form. An Active stream can be
made dormant, and Active streams can be
started from any part of a dormant stream.

The Stream Package is currently under
development and has not yet been released.
The software package that accompanies this
document does not include it. When devel-
opment has progressed to a releasable
stage, it will be made available for
download at the project site listed at the
end of this document.

4.4 Routers and Buses
Routers and Buses form the broadcast

and multicast mechanisms for message
delivery. They provide message delivery
functionality between local and remote
Modules.

4.4.1 Local Routing
Local routing is accomplished by a

system level call that dispatches messages

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

to and from Modules running on a specific
system or processor. Messages posted using
this function call are routed to the queue
corresponding to the destination Module ID
in a first come first serve basis. Except for
when an error condition occurs, the internal
dispatcher is completely transparent. If a
message is sent to an invalid Module ID or
the security permissions are incorrect, then
the dispatcher will post an
ERROR_UNREACHABLE message to the
sending Module.

4.4.2 Remote Routing
When a message is sent to the dis-

patcher that has a non-local node address,
the dispatcher sends the node to a special
module that forms a routable bridge over
the network connecting the nodes. This
bridge will forward the message to the
destination node. The routing architecture
is based on a fixed topology where each
node has up to sixteen connections to its
nearest neighbors. When a message is
routed, it is sent towards the node, rather
then to it.

As the message travels, the Timestamp
field becomes a time to live field. As clock
synchronization is not used, this field is not
worth much between nodes. It should be
noted that the lack of clock synchronization
is a design decision and can be imple-
mented on top of the system if required.

Each node is defined by a 32 bit node
address. This node address is based on
adjoining nodes and will not change during
operation. The 32 bit word is broken up into
eight four bit vertices. These values define
the virtual position of the node in a eight
dimensional torus or hypermesh.

Listing 4.4.2: Address of the Seed Node
Vertices Value 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000
Node ID 0x88888888

For example, if a Module on the seed
node sends a message to a Module running
on node ID 0x88878888, the node will be

sent down the lower connection corre-
sponding to the fourth dimension of the
hypermesh.

When a message destined to an exter-
nal node is received, a routing strength
vector is calculated. Depending on this
vector, the message is routed down one of
sixteen virtual channels created over a
network to the other nodes. Thus propaga-
tion time is directly dependent on how far
away the node is. In the previous example,
the strength vector would have a strength
of one and a direction equal to the 4D
Lower connection.

The Remote Routing Package is also
currently under development and has not
yet been released. It is currently based on
the ADSP protocol, and thus runs as a
cooperative thread. This is a major perform-
ance limitation and also requires the
network topology to be manually
configured. Consequently, as improvements
are made to this package, this document
does not include it. When development has
progressed to a releasable stage, it will be
made available for download at the project
site listed at the end of this document.

4.4.3 Buses
A Bus is a special module that takes a

single message in and send many messages
out. The only bus implemented in this
version of the system is a module that
maintains a list of modules that are to be
notified if a message is sent. Modules can
enlist or delist themselves. As buses relay
messages, like bridges, they send messages
that appear to be from a Module ID other
then their own Module ID. This may have
to be addressed in a later release for secu-
rity reasons.

Bus Module Documentation
// To join a bus, send a Message with EventType of
// EVENT_BUS_JOIN
// To leave a bus, send a Message with EventType of
// EVENT_BUS_LEAVE

// At this time, Modules cannot check what modules are
// members or delist other Modules.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

5. The Runtime Architecture

5.1 The Kernel
The ADE (Asynchronous Distributed

Environment) Kernel consists of four com-
ponents, a Hardware Adaptation Layer, a
virtual memory manager, a threading man-
ager and a interface library that make the
Kernel services available. These services
provide the underlying foundation on
which a complete distributed computing
architecture can be constructed.

The Kernel has two different builds:
one that implements all of the components
listed above and one that uses services
provided by a host operating system. Func-
tions and capabilities available to modules
are directly dependent on which build is
used. The build that is included with this
paper is the second type. It is built using
wrappers that use the functionality of the
Mac OS.

5.2 Kernel Memory Services
The Kernel Memory Services manages

memory pages and their relationship to
processes. It is called extensively to swap
execution spaces. Each thread has a variable
number of pages mapped to it. When the
thread context is changed, the pages of the
suspended thread are mapped out, and the
pages of the revived thread are mapped in.
When the Kernel is bootstrapped, the re-
gion of address space that is linked to the
physical hardware addresses that the
memory is stored in is registered and seg-
mented. For hardware driver Modules,
hardware addresses can be mapped into the
Modules memory space.

5.2.1 Kernel Memory Services
When a Module is first created, the

Kernel has automatically mapped in a
specific amount of memory that contains
the executable code, data and space for
execution. When the Module has first been

loaded and has consequently has a linear
unfragmented memory map. At this time
the module has the opportunity to grow or
shrink the amount of space available for
execution (the stack and heap).

Memory Library Prototypes:
(MemoryServicesLibrary.h)

// PROTOTYPES ---

// Module Memory expansion and contraction functions
uint32 MemoryGetHeapSize(void);
uint32 MemoryGetHeapFree(void);
uint32 MemoryGetHeapTop(void);

OSErr MemoryGrowHeap(uint32 Amount);
OSErr MemoryShrinkHeap(uint32 Amount);

// Stack manipulation functions
uint32 MemoryGetStackSize(void);
uint32 MemoryGetStackFree(void);
uint32 MemoryGetStackBottom(void);

OSErr MemoryGrowStack(uint32 Amount);
OSErr MemoryShrinkStack(uint32 Amount);

Modules can also access additional
aspects of the Memory Manager to manu-
ally map memory in and out of their
address space. These functions are typically
used when writing Modules that access
hardware or manage their own memory.

Listing 11: Memory Mapping Prototypes:
(PMemoryServicesLibrary.h)

// PROTOTYPES ---

// Mapping Functions
Ptr GetMCBase(void);
Ptr GetMCExtent(void);

uint32 GetPageSize(void);

#ifdef OS
Ptr MapPage(Ptr HWAddress);
void UnmapHWPage(Ptr HWAddress);
void UnmapPage(Ptr MappedAddress);
#endif OS

Note that the functions that perform
hardware page mapping are not available
when the Kernel is hosted on an existing
operating system.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

5.2.2 Kernel Memory Services:
Internal API
Functions exist to create and destroy

Module contexts. These are used internally
by the Kernel Thread API. When threads
are created a default amount of stack space
is mapped into the Module Context. When
a module is destroyed, any memory
mapped into that Module Context is auto-
matically unmapped.

5.3 Kernel Threading Services
The basic operating unit is a

preemptive thread. Every module has one
or more thread. These threads are based on
a threading library, either Pthreads or the
Apple-Daystar MP Library on the Mac OS.

The runtime model uses a slightly
modified round robin scheduling algorithm
with module priority implemented via load
balancing.

As all computing processes are intrinsi-
cally bursty, the scheduler is based on
message load. Modules that have handled
all pending messages and do not require
idle processing time are put to sleep using
the thread sleep mechanism. When the
dispatcher sends a message to a module, it
automatically wakes the corresponding
thread. As all modules are preemptively
multitasked, awake threads can be sched-
uled in a round robin fashion. This allows
an extremely simple scheduler (The
scheduler built into the threading library
can almost always be used) to efficiently
deal with large number of processes that
are not always requiring CPU cycles. This
mechanism also results in a near linear
slowdown as processor load increase.

While this system of scheduling is fast
and simple, it does not support more ad-
vanced capabilities such as priority
scheduling. A simple mechanism to imple-
ment this capability is to place higher
priority modules on a less loaded CPU or
system. This is done with the system level
servers. As the processing power available

to a module is dependent on the number of
modules on that processor, the less modules
running, the more time, and consequently
processing power available.

No critical section code synchroniza-
tion mechanisms are provided.
Synchronization at a code level is not rec-
ommended, and no services for such are
provided. While this lack of synchroniza-
tion mechanisms may be seen as a problem,
there are many Module level synchroniza-
tion patterns that can be used to duplicate
their capabilities. For example, when mes-
sage order and time become factors,
protocols such as the sliding window can
enforce serialization and in order delivery.

Module Threading Functions
(ThreadServicesLibrary.h)

// PROTOTYPES ---

// Thread creation and destruction prototypes
OSErr ThreadCreate(&ModuleThreadIDPtr)
OSErr ThreadDestroy(ModuleThreadIDPtr)

// Thread Utilities
void ThreadSuspendSelf(void)
OSErr ThreadSuspend(ModuleThreadIDPtr)
OSErr ThreadResume(ModuleThreadIDPtr)
Boolean isThreadRunning(ModuleThreadIDPtr)

// Placeholder function for cooperative multithreading
void ThreadYield(void)

Threads created using the functions
listed above live within the context of the
Module that created them. These threads
can be used to segment tasks within a Mod-
ule. For example, a server could spawn a
thread for each request a specific handler
gets. It should be noted that if these thread
libraries are used, then the Module should
be re-designed. Almost all modules do not
require additional threads. If a module
writer does decide to have multiple
threads, they are responsible for writing the
mechanisms that allow communication
between threads and any necessary syn-
chronization.

The function that is most commonly
used within a Module is the

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

ThreadSuspendSelf call. This function
suspends a thread until it receives another
message. This function is called by default
by the PullMessage function if there are no
messages pending. This allows Modules
that have no work waiting for them to be
suspended allowing other Modules to use
their CPU time.

5.1.3 Kernel Queuing Library
Two approaches are available to per-

form queuing for messages: Module based
queues, and System Queues. In Module
Queues, the queue and messages are stored
in the memory space of the Module that is
receiving the message. In System Queues,
the queue and messages are stored in the
system memory. Module based queues
were chosen as they provide additional
isolation from each other, and reduce the
amount of protected code that needs to be
written. It also results in a performance
increase, as less mode switches are re-
quired.

Module Queue Post and Pull pusdocode
/*

Post Message
{

Look up destination process information
Verify Security privileges to post to

Module
Allocate memory in destination process

page
Copy message contents to allocated memory
Add message to Module queue in

destination process
}

Pull Message
{

Remove message from local Module queue
}

*/
Modules interface with the Queuing

Library to post and pull messages. There
are three mechanisms to send events from
Modules.

The first method involves filling in all
of the fields of the message structure except

for the source NID, source PID and
Timestamp fields. The PostMessage func-
tion can be called. Alternately, the
individual values to be assigned to the
values of the message fields can be passed
to the PostMessage. Various overloaded
functions are available to accept different
numbers of parameters for the six fields
that form the user defined portion of the
message.

IPC Services Prototypes: (Kernel_IPC.h)
// PROTOTYPES ---

// Message Posting
OSErr PostMessageRaw(

EventStructurePtr theEvent);
OSErr PostMessage(uint32 EventType,

uint32 DestinationProcessID,
uint32 DestinationNodeID, uint32 param1,
uint32 param2, uint32 param3,
uint32 param4, uint32 param5,
uint32 param6);

// Message Pull
Boolean PullMessage(

EventStructurePtr theEvent);

// MACROS --
PostReply(EventStructurePtr theEvent,

uint32 EventType, uint32 param1,
uint32 param2, uint32 param3,
uint32 param4, uint32 param5,
uint32 param6);

PostReplyOne(EventStructurePtr theEvent,
uint32 EventType, uint32 param1);

PostError(uint32 DestinationProcessID,
uint32 DestinationNodeID,
uint32 ErrorType);

PostErrorReply(EventStructurePtr theEvent,
uint32 ErrorType);

The PostMessage routines is the only
function that calls protected mode code in
the message passing system. Protected
mode access is required to allow access to
memory mapped into different modules.
When the Kernel is running in protected
mode it can directly manipulate the re-
quired data structures to copy the Message
data.

Module retrieval occurs fully within
the address space of the Module, as the
contents of the messages and the input
queue are also within the Module. This

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

allows the retrieval functions to implement
additional functions if needed such as
priority message sorting

5.2 Message Dispatching
As discussed above, when messages

posted from Modules they are automati-
cally are placed into a queue corresponding
to their destination. Before the messages are
dispatched, they are verified for correctness
and security permissions. Only if success-
fully verified are they are posted into the
destination queue.

Modules are verified by looking up the
source and destination processes in the
Process Tree. If the source and the destina-
tion modules exists and are located on the
local system, then the message is routed.
Otherwise, if the destination is on a remote
node, the message is posted into the corre-
sponding queue for it to be routed to the
correct node.

Message dispatching can occur in two
different places depending on the architec-
ture used. In one variant, the dispatcher is
integrated into the PostMessage function as
a protected call. In the other variant, the
Dispatcher is a separate Module that han-
dles posted messages from many different
modules. Both architectures have different
advantages and disadvantages. As IPC
performance is critical for any message
based distributed system, having the dis-
patcher as a separate Module is not the
preferred option. The advantages of having
a separate dispatcher is that it allows addi-
tional debugging information to be made
available and it is a cleaner design then
integrating the call directly into the Mod-
ule. If performance is an issue, the
dispatcher is integrated directly, and the
number of searches on the process table
that need to be made is cut in half.

5.2.2 Security Verification
The ADE environment contains several

systems to implement basic security. As the

only way that Modules can communicate is
via messages, a variety of restrictions are
placed on this communication vector.

Every module has a Security Clearance
level. This level is inherited from the mod-
ule that created it. Modules can create other
modules with equal or lower security clear-
ances, and Modules can only communicate
with other modules with an equal or lower
security clearance. This permits domains of
modules at different levels to preserve the
secrecy of information.

Modules are also assigned a type iden-
tifier. These types, System, User, etc, govern
how modules can communicate between
types. The current mechanism is that mod-
ules may send messages to other modules
only if the type is no less then one higher or
lower then the type of the sending module.

Permission Requirements:
• Must be from a valid process
• Must be destined to a valid process

For messages destined to non-system
process, the Message must be sent to Mod-
ules owned by the same user and created in
the same session.

Destination Module must have same
clearance as the Source Module

Destination Module Process Type value
must be no more then one level higher or
lower then the Process Type value of the
Source Module

Most of these security mechanisms are
only visible when they are required. Checks
three to five are largely configurable by the
software developer.

Check three maintains user and proc-
ess boundaries preventing programs being
run by different users on the same system
from interacting via messages. If two pro-
grams run by different users or during
different sessions need to be able to com-
municate, higher-level communication
mechanisms should be established. These
services for session and user level IPC will
be established at a later date.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Clearance Levels are largely used
within the system for logical separation. As
the programmer can set type values, they
are useful for ensuring secured areas of the
software cannot be directly accessed with-
out going through the wrapper API.

Other checks are performed to prevent
forged messages and invalid messages.
These checks are performed before the
message is dispatched. If a security viola-
tion is detected, a corresponding return
code is returned.

5.3 Servers
A server is a Module that offers a serv-

ice that forms a core portion of the
operating environment. The definition of a
server in the system is a system level mod-
ule that provides a service to other
modules.

5.3.1 The Process Server
The Process Server manages the crea-

tion and destruction of Modules. It can also
be used to check if Modules are running. It

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

depends on the File Server to access file
systems where Module code is stored on. In
this development version, the File Server is
incomplete, so temporary code exists in the
Process Server that permits direct access to
the Mac OS file system. Currently at this
stage in the Mac OS version Modules are
based on the Code Fragment manager. This
allows ordinary development environments
to be used to write Modules. For more
information on exactly how Modules need
to be formatted and placed to be recognized
by the Process Server are covered in the
read me included with the software.

Other Servers are to be added to this
document as their MPI (Message Passing
Interface) are finalized.

6. Module Development
Patterns

6.1 Message Delivery Patterns
How messages are sent from Module

to Module is critically important when
designing software for the ADE system.
Some of the patterns discussed below illus-
trate the basic message passing patterns
used in the system. By combining these
different patterns many different
architectures can be built.

6.1.1 Many to One
Several different Modules can send

messages to a single Module by opening
ports to the same Module.

Module 2

Module 3

Module 1 Module 4

Figure 6.1: Many to One

The Many to One pattern is used exten-
sively in the ADE system. Many Modules
provide common functionality to many
different modules simultaneously. As mes-
sages from many different modules can be
received and handled from the same queue,
services can be easily shared.

6.1.2 Feedback
A slight variation on the Many to One

pattern is where a Module sends messages
to itself. This mechanism can be used to set
up feedback loops and to provide easy
error handling and status monitoring.

Module 1

Figure 6.2: Feedback Message Delivery

As an example, a Module could use
this pattern to keep a log of sent messages
by copying all outgoing messages. A special
handler for all messages with a source
equal to the destination would handle the
messages to log.

6.1.3 One to Many
As there are no multicast mechanisms

built directly into the system, Modules
must be used to provide similar functional-
ity. Currently, Bus Modules permit one to
many relationships. This is currently an
area of investigation to see if multicast
mechanisms with greater capabilities then
offered by the bus module is required.

For example, all Modules that would
like to receive
EVENT_HW_MOUSE_MOVE events could
contact the MouseMove Bus and subscribe.
This allows modules that are interested in
specific event type that is relevant to more
then one module to receive it.

If modules wanted to be notified by an
event when the mouse entered or left a
rectangle they registered with a module, a

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Module 6
(Bus)

Module 2

Module 3

Module 4

Module 5

Module 1

cross between the One to Many pattern and
the Dispatcher pattern would be used. The
Modules would register their rectangles,
and the MouseMove module would con-
stantly filter the stream of raw
EVENT_HW_MOUSE_MOVE events into
EVENT_HW_MOUSE_ENTER and
EVENT_HW_MOUSE_LEAVE events that
would be dispatched to the corresponding
module.

6.2 Module Patterns

6.2.1 Pass to Parent
The Pass to Parent Pattern is very

useful. In this pattern, Messages that are
not handled by a Module are automatically
sent to the Module that created it. This has
the many uses in user interfaces, as the
concept of expanding focus is central to
today's UI.

6.2.2 Pass to Child
The Pass to Child Pattern is also exten-

sively used in user interfaces. An example
is when a window is deactivated, an
EVENT_UI_OBJECT_DEACTIVATE mes-
sage is sent to every object that is contained
in the window.

6.3 Handler Patterns

6.3.1 Dealing with remote operation
dependencies
In some instances, the order in which

operations take place is critical. For exam-
ple, changing the order in which matrixes
are multiplied will result in an incorrect
answer. This problem is usually avoided by
the strictly linear nature of procedural
programming languages. While this is still
true in the ADE environment, there are
some cases where remote processing must
occur before a handler can finish. For exam-
ple, in the Handler below, operation D
depends on the completion of Handler C in
a remote Module.

Handler 1
{

operation A
operation B
Send message to perform operation C
operation D

}

Traditionally, when operation D de-
pends on operation C the mechanism used
to ensure completion of C before D is an
blocking RPC call. While this will work, it is
a better approach to restructure the handler
into two parts. In most cases, the resulting
restructured handler will be clearer and
easier to debug.

Figure 6.3: One to Many Pattern

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Handler 1
{

Operation A
operation B
Send message to perform operation C

}

Handler 2
{

operation D
}

For this segmentation to work, the
Handler that performs operation C must
have the capability to return to the caller a
reply message when the process has suc-
cessfully or unsuccessfully completed.

This also makes error handling very
elegant. If C requires a shared device that is
currently in use, the device could be con-
tinuously polled by the following change to
Handler 2.

Handler 2
{

if(inUse)
{

Send message to perform operation C
}
else
{

operation D
}

}

While it would be a better design to
have a manager for the device that notifies
interested modules when the device be-
comes available, this style of fragmentation
makes inclusion of advanced error han-
dling and fault tolerance easier then in
traditional programming.

6.3.2 Dealing with missing messages
If a bulk data transfer is occurring,

message payload can be copied into an
array. When a message is received the first
word of the payload indicates where it fits
in the block. The remaining five words are
copied, and if the location is one higher
then the value of the lower counter, the
lower counter is incremented. When the
upper counter gets higher then the lower
counter by a predefined range, messages

can be sent to the sending Module to re-
send the missing Messages. These resent
messages will be transparently merged into
the array without requiring any additional
coding.

6.3.3 Simulating RPCs
This is discouraged, but will be sup-

ported.
As messages destined to a Module are

queued, waiting for a message within a
handler will result in all messages being
received being blocked. To allow a Handler
to wait for a message without blocking
pending messages, the HandleWait call is
made available.

HandleWait will block until a message
of EventType is received. To use
HandleWait, the Module must be struc-
tured differently and must be Reentrant.
When HandleWait is called, the Module
enters a specialized loop. Messages are
received, and if they do not match the check
criteria, the LoopBody function is called.
This permits messages to still be handled.

Module Structure using HandleWait
OSErr HandleWait(uint32 EventType,

void* ModuleLoopBody);

void main(EventPtr theEvent)
}

// Perform Initialization
While(!TerminateFlag())
{

PullMessage(&theEvent);
LoopBody(&theEvent);

}
}

void LoopBody(EventPtr theEvent)
{

Switch(theEvent->EventType)
{

case EVENT_MYMESSAGE:
{

// Post an Message
HandleWait(EVENT_MYRESPONSE,

(void*) LoopBody);
break;

}
}

}

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

7. Mac OS Implementation

7.1 Mac OS Runtime
Implementation
Due to limitations of the Mac OS, only

one of the two system level requirements
are met in the Mac OS version of the ADE
environment. Preemptive threads are made
possible by the Apple-Daystar Multiproc-
essing API, but protected memory, or more
specifically, supervisor level page manage-
ment, is not accessible to the programmer
and is not compatible with the MP library.

7.1.1 Existing Relationships of
Components
On the Mac OS, some modules run as

preemptive threads, and others run as
cooperative threads. As the Mac OS Toolbox
offers too much functionality to resist,
Modules that use toolbox calls must run as
a cooperative thread. These modules then
proxy the toolbox services to other modules
that run preemptively. When the Carbon
environment is released with Mac OS X,
some of the Carbon APIs will be thread safe
and thus can be called from MP tasks.

Macintosh Computer

Modules

MacOS

Open
Transport

Kernel

ATM
Firewire
TCP/IP

ToolBox Server
(UI)

Premptive Multitasking
Multi-processor
environment (MP API)

MacOS

Net
File
Sys

HFS
QuickDraw &

Interface
Services

File System
Server

To Other Nodes

UI
Events

Dispatcher

Process Server
(Threading)

Figure 7.1: Existing Component Relationships

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

7.1.2 Current Limitations of Mac OS
Implementation
While the Mac OS fulfils the

primary requirements of the plat-
form, modules are not in their own
protected memory space. Thus a
misbehaved modules can take down
the system. While this is a concern,
this weakness results in the tempta-
tion for developers to bypass mechanisms
made available to perform inter-process
communication and data transfer. Sharing
memory directly is strongly discouraged, as
it introduces complex relationships, does
not port to other platforms hosting the
environment and compromises the spirit of
the environment. In addition, direct inter-
module memory accessing will result in
code breaking when hosted on multiproc-
essing and distributed systems.

Problems with the lack of protected
memory:

• Modules can crash the system
• Modules can bypass security mecha-

nisms
• Modules can interact in non-standard

ways
The architecture is designed to avoid

these three problems by making it difficult
to directly access Kernel and Module struc-
tures.

7.1.3 Software included with this paper
Included with this paper is a develop-

ment version of the ADE environment
discussed in this paper. This release in-
cludes the environment runtime files,
sample projects, a CodeWarrier project
template and updated documentation
about how to use the functions provided. If
multiple versions of this document exist,
this is document revision 0.76. The docu-
ment with the larger number is the most
current version.

7.1.4 Components & Icons
The Kernel is the core of the system. It

manages memory, threads and process
information.

ADE Libraries are core system libraries
that are required to allow the ADE to run
on top of an Operating System. They act as
abstraction layers, insulating the Kernel
and Servers from the nuances of OS specific
APIs.

ADE Servers are modules that perform
system domain functions for other mod-
ules.

ADE Applications take advantage of
the Host Operating System to startup and
provide debugging functionality to the
system.

ADE Modules are the "programs" of
the system and are loaded and executed by
the system.

7.1.5 Other Components
The Bootstrapper

The bootstrapper is a small Macintosh
application that prepares and starts up
portions of the Kernel. It reserves a parti-
tion of memory, initializes internal data
structures and starts up the critical servers
required for operation. When the Kernel,
Process Server and Dispatcher are running,
it then starts the Startup Module.

The Network Router
The Network Router uses ADSP to

create connections between systems run-
ning the ADE environment. As this
component is still in early testing stages, it
is not installed by default, and the system
network topology must be configured

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Other
Modules

Kernel IPC
Routines

Kernel Threading
Routines

Process
Server

Hardware

user

super

Dispatcher Other
Modules

Virtual Memory and Paging
non-existent

MP API

Kernel Memory
Routines

Figure 7.2: Mac OS Implementation Diagram

manually. Refer to the documentation with
this component for more information.

7.2 Mac OS Operating Environment
Implementation
The current implementation of the

ADE environment on the Mac OS is out-
lined in the below diagram.

7.3 Libraries and External
Components
The demos and SDKs provided with

this paper are built in the Metrowerks
development environment. You will need
Metrowerks Pro 2 to build this system.

The Multiprocessing extensions must
be installed if the preemptive version is to
be used. The Daystar/Apple MP develop-
ment SDK is included with the package.
Note that CodeWarrier must be installed on

your startup hard disk for debugging of
preemptive Modules to be enabled.

The included DebugWindow program
allows the programmer to view internal
asserts, errors and messages from within
the Kernel and servers. This can be invalu-
able for troubleshooting problems that are
related to system components.

8. Future Development
The implementation of the ADE envi-

ronment that is included with this paper is
incomplete at best. Many improvements,
both to the core system and Modules are
planned over the next year.

These additions and improvements
include support for additional platforms,
new servers and modules and enhanced
distributed capabilities.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Copyright 1998, David Slik.
Portions Copyright 1997, 1998 D.S. Technologies, Inc.

Non-exclusive permission is granted to MacHack to publish this paper.

As the ADE environment is designed
to be easy to implement on top of a wide
range of operating systems, ports to addi-
tional operating systems are not difficult.
While access to preemptive multitasking
and protected memory APIs are recom-
mended, they are not required. Tentative
ports to Unix using the PThread library
have been tested. At this time, non-Mac OS
implementations are largely experimental.

Many new servers will be added to the
system. These include a distributed file
system server, module migration across
nodes, a graphical user interface server and
hardware servers.

A library of reusable modules will be
built up and refined to provide a robust
starting point for application development.
This will facilitate the development of a
visual software development tool that will
permit modules to be programmed to-
gether.

All of the components described in this
paper will continue to be refined and im-
proved. Documentation will be provided,
and information about the system will be
posted on the Web.

The most current version of this docu-
ment, the SDK and examples, and
additional software developed for the ADE
environment can be found at:

ADE Home Page
http://web.uvic.ca/~dslik/ADE/

